Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 51(6): 1155-1167, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35946838

RESUMO

Agricultural phosphorus (P) loss, which is highly variable in space and time, has been studied using the hot spot/hot moment concept, but increasing the rigor of these assessments through a relatively newer "ecosystem control point" framework may help better target management practices that provide a disproportionate water quality benefit. Sixteen relatively large (0.85 ha) subsurface drainage plots in Illinois were used as individual observational units to assess dissolved reactive P (DRP) concentrations and losses within a given field over four study years. Three plot-months were identified as DRP control points (one export and two transport control points), where each plot-month contributed >10% of the annual DRP load from the field. These control points occurred on separate plots and in both the growing and nongrowing seasons but were likely related to agronomic P applications. Elevated soil test P, especially near a historic farmstead, and soil clay content were spatial drivers of P loss across the field. The nongrowing season was hypothesized to be the most significant period of P loss, but this was only documented in two of the four study years. A cereal rye (Secale cereale L.) cover crop did not significantly reduce DRP loss in any year, but there was also no evidence of increased drainage P losses due to freezing and thawing of the cover crop biomass. This work confirmed annual subsurface drainage DRP losses were agronomically small (<3% of P application rate), although the range of DRP concentrations relative to eutrophication criteria still demonstrated a potential for negative environmental impact. The control point concept may provide a new lens to view drainage DRP losses, but this framework should be refined through additional within-field studies because mechanisms of P export at this field were more nuanced than just the presence of tile drainage (i.e., a transport control point).


Assuntos
Ecossistema , Fósforo , Eutrofização , Solo , Agricultura
2.
J Environ Qual ; 50(6): 1408-1418, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390507

RESUMO

Artificial subsurface drainage is essential to sustain crop production in many areas but may also impair water quality by exacerbating nitrate (NO3 )-nitrogen (N) delivery downstream. Cover crops and split-N application have been promoted as key conservation practices for reducing NO3 -N losses, but few studies have simultaneously assessed their effect on water quality and crop productivity. A field study was conducted to evaluate the effects of N application timing and cover crops on subsurface drainage NO3 -N losses and grain yield in continuous corn (Zea mays L.). Treatments were preplant-N: 224 kg N ha-1 split-applied with 60% fall + 40% preplant in 2018, or as single preplant applications in 2019 and 2020; split-N: 40% preplant + 60% side-dress (V6-V7); split-N + cover crop (CC): Split-N + cereal rye (Secale cereale L.); and a zero N plot as the control. Across the 3-yr study period, split-N + CC significantly reduced flow-weighted NO3 -N concentration and NO3 -N loss by 35 and 37%, respectively, compared with preplant-N. However, flow-weighted NO3 -N concentration (4.3 mg L-1 ) and NO3 -N loss (22.4 kg ha-1 ) with split-N were not significantly different from either preplant-N (4.8 mg L-1 and 26.4 kg ha-1 , respectively) or split-N + CC (3.1 mg L-1 and 16.7 kg ha-1 , respectively). Corn yield was significantly lower in the control treatment but did not differ among N fertilized treatments in any year. These results indicate that combining split-N application with cover crops holds promise for meeting the statewide interim milestone NO3 -N reduction target of 15% by 2025 without negatively impacting crop productivity.


Assuntos
Nitrogênio , Zea mays , Agricultura , Fertilizantes/análise , Nitratos/análise , Nitrogênio/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...